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SUMMARY

The purpose of this research is to develop new methods to

determine how the frequency of laminates depends upon the

microstructure of each individual layer. Toward this end, modern

methods of sensitivitivity analysis are employed to develop new

closed-form representations for the frequency response of

laminates, where the governing eigenvalue equation is represented

either in distributed parameter or discrete form. Solutions are

obtained for both damped and undamped structures in terms of the

aggregate micromechanical properties (stiffnesses and damping

coeffi -ents). Thus the solutions are valid for all

macromechanical models of the microstructure.

One new method for determining the effective stiffness and

mass properties of the laminate - the Load Correction Method - is

developed in detail, and some of the computational issues

associated with this method are discussed.
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1. INTRODUCTION

Overview

The response of multi-layered laminates can be obtained from

classical laminate theory (1]. Once the mechanical properties of

individual unidirectional laminae are known, the specific

eigenvalue equation governing the frequency response of the

laminate can be expressed in either discrete or distributed

parameter form. According to classical laminate theory, the

frequency response of symmetric composite laminates depends upon

the stiffness properties (Du, D12, D2, D6, D,6, and D.6). Likewise,

damping can be accounted for by appropriately introducing damping

parameters C. In turn, the stiffness parameters Di and damping

parameters are known functions of the individual layer stiffness

properties E,, E21 V12, G,2 and the layer geometry and orientation.

Similarly, Cij can be determined from the damping characteristics of

each layer and the partiuclar viscoelastic model that is adopted.

There are numerous papers that develop the laminae stiffness

properties in terms of the micromechanical properties Em, Ef, Ur, Vf

and the volume fraction v of, say, fibers. Virturally all studies

adopt the law of mixtures[I] to obtain the principal Young's

modulus E, and Poisson's ratio V12 in terms of the aforementioned

micromechanical properties. There are some other methods that

employ elasticity and its theorems on minimum potential and

complementary energy to obtain bounds on E, and u12 [2-4].

Fortunately, these upper and lower bounds are fairly close to each

other. We have found by direct calculation that the frequency

response of angle-ply laminates is relatively insensitive to the



various assumed values of E, and V,2 between their upper and lower

bounds.

The stiffnesses E2 and G,2 can vary greatly depending upon the

assumed modelling assumptions. Likewise, elasticity approaches

show that there are wide percentage variations between their

permissible maximum and minimum values. Howerver, for most fiber-

reinforced laminae, these stiffnesses are small compared to E,. As

a result, the frequency response of angle-ply laminates is

relatively independent of the values E2 and G12, provided these

values are selected within their elasticity defined limits.

Consequently, insofar as the objective to determine the frequency

response of laminated composites in terms of its micromechanical

elastic properties is concerned, it appears that the result is

relatively independent of the micromechanical model.

Viscoelastic modelling, however, is a different matter. In

contrast to its elastic counterpart, there are very few published

papers on this subject. In one such paper [5], some viscoelastic

properties are dtermined both experimentally and analytically.

A second major objective of this research was to develop new

models which retain the local discontinuities of multiphase

materials and are capable of characterizing composite fiber-

reinforced laminates. The approach was to adapt a methodology,

called the load correction method (LCM) (6] for the static

analysis of repetitive lattice structures having local

discontinuities [7] to the dynamic analysis of composites.
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Report Organization

Chapters 2-5 are deveoted to explicity obtaining the solution

for the frequency of laminated symmetric plates in terms of the

laminates stiffness and damping properties. Chapter's 6 and 7

report on the progress in developing the LCM approach.

Specifically, Chapter 2 is based upon a paper in which the

distributed parameter form of the eigenvalue equation for laminates

and sensitivity analysis is used to develop an explicity solution

for the frequency response of elastic laminates subjected to

various boundary conditions. This paper was presented at OPTI '89,

an international conference held in Southampton, UK.

In Chapter 3, the general sensitivity analysis meth±od

presented by Reiss [7], is specialized to discrete self-adjoint

eigenvalue problems. This material was presented in Valparaiso,

Chile, 1991 at the 2nd Pan American Congress on Applied Mechanics.

Chapter 4 extends the PI's earlier results to include viscous

damping. Sensitivity analysis is again used for both distributed

and discrete models. Specific accurate approximations for the

complex eigenvalues are given in terms of the stiffness, mass and

damping matrices. This chapter was presented at the ASME Design

Automation Conference in Chicago, Septermber, 1990.

Chapter 5 employs the methods of Chapter 3 to obtain still new

solutions for the frequency response of laminated plates. This

solution is slightly more accurate than the one obtained in Chapter

2. Moreover, unlike the method in Chapter 2, this approach is

rigorous and can be used to quantify the error in the

approximation. These results, originally intended for presentation

3



at the cancelled IMAC meeting, were presented by invitation at the

Florence Modal Analysis Conference, Florence, Italy, in September,

1991.

Chapter 6 summarizes the development of the load correction

method to date. Some of the computational aspects of this method

are presented a Chapter 7, a paper also presented at PACAM II.

Chapter 8 summarizes some of the conclusions of this report

and makes some specific recommendations for further study.
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2. The Fundamental Frequency of Symmetric
Laminates Determined by Eigensensitivity Analysis
Bo Qian and Robert Reiss
Department of Mechanical Engineering, Howard University,
Washington, D.C. 20059, USA

ABSTRACT

A new closed-form approximate solution for the fundamental
frequency of symmetric rectangular laminates is presented for
all classical combinations of clamped and/or hinged edge sup-
port conditions. The derivation consists of an expansion of
the fundamental frequency in a MacL[iurin series in the cou-
pling stiffnesses D16 and D26 and then truncating after qua-
dratic terms. The r( iired sensitivity derivatives are calcu-
lated using a method developed by Reiss '1". Calculated re-
sults obtained from the new approximate formula are generally
within 2% of the frequency obtained from conventional numeri-
cal methods, but require but a fraction of their computational
effort.

INTPODUCTION

An accurate method to determine the flexural fundamental fre-
quency of symmetric rectangular laminates is necessary for mod-
ern laminated composite "=sign. Closed-form exact solutions
are available only for simply-supported orthotropic laminates
[2]. Closed-form approximate, but very accurate, solutions for
orthotropic plates, none of whose edges are free, have been
obtained by Hearmon [3) using a one-term Rayleigh-Ritz proce-
dure.

The literature i-o contains a few closed-form approxima-
tions for anisotropic Laminates. Bert considered general sym-
metric rectangular laminates whose edges are either simply-
supported [4] or clamped [5]. He assumed a linear relation-
ship between eigenvalue and flexural stiffnesses, and deter-
mined the unknown constants from numerical calculations. A
different approach was taken by Reiss and co-workers. Reiss,
Ramachandran and Qian [6], using exact sensitivity derivatives,
obtained an approximate solution for the natural frequencies

5



* " "300 Computer Aided Optimum Design of Structures

of a four-layer symmetric simply-supported angle-ply laminate.
The frequonc i ,-; oh i, m l.,I w,* tr' I1".,- tt I in r he form of a trun-
c-ed Fourier series in the ply angle. Reiss and Qian [7]

,hen generalized those results to include all simply-supported
symmetric laminates.

The purpose of this paper is to develop one simple formu-
la to determine, approximately, the fundamental frequency of
symmetric laminates subject to all combinations of hinged and

clamped edge conditions.

PROBLEM STATEMENT

The eigenvalue equation for a freely vibrating symmetric lami-

nate is

D1 W, Axxx + D22 W, yyyy + 2(D12 + 2D66) Wxxyy

+ 4 D16 W, 4 D26 Wxyyy 2 (1)

where w denotes the mode shape, w is the corresponding fre-

quency, o is the mass density, Dil are the flexural stiff-
nesses [1], x and y are th, coordinates in the plane of the
laminate, and indices following a comma denote differentiation
with respect to the indicated argument.

Each of the edges x=O and x=a is either hinged or clamped.

The appropri re bni,,ind,,rv (-d,, i ,'. .irc

hinged: w - U1 w'Xx ' 2x1it.

k2)
clamped: w = w.

Similarly, each edRo v-0 and y-h is also either hinged or
clamped. Thu!. Lh:c,.' b,,,,,d.iry co,dit ions are

hinged: w = 2D26 W,xy + D 22 W,yy = 0

clamped: w = w,y = O

The objective of this paper is to determine the lowest
frequency w12 for each of the combinations of boundary condi-

tions (2) and (3) in terms of the material parameters Dij and
plate aspect ratio R:

R = a/b (4)

EIGENVALUE DIFFERENTIATION

Before proceeding with the development of the solution to the

stated problem, IL is useful to review some general mathemati-

6
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cal formulae that are essential to the current approach.

Consider the class of eigenvalue problems which can be
represented in the form

mn mn
T*E(S)T w =Amn Mw (5)

to which appropriate mixed boundary conditions must be append-
ed. A detailed discussion of the requirements the operators
appearing in Equation (5) and the boundary operators must sat-
isfy can be found in the paper by Reiss and Haug [8]. For our
present purposes, it suffices to note that T and T* are L2
adjoint differential operators, S is a collection of variable
parameters, and E and M are positive stiffness and mass opera-
tors, respectively. The double indices m and n are included
in order to facilitate a solution for the two-dimensional lam-
inate.

The eigenvalue Xmn is a functional of the parameters de-
noted symbolically by S. And if these parameters change by a
small amount 6S, Xmn changes by a small amount 6xmn [I]:

6xmn = (T wmn , 6 E T w n) (6)

where the normalized eigenfunctions satisfy

mn (7)
(w , M w) = I (7)

In Equations (6) and (7), (., " denotes the usual L2 inner
product over the domain spanned by the functions involved - in
the case, the planar area of the plate. Furthermore, the
second variation of the eigenvalue is given by the expre3sion
[1]:

2 mn 2 mn6 Xmn =(T w 62ETw

mn

(T wiJ,6 E Tw
mn )  (8)

i,j Am,n ij - xmn

In Equation (9), the summation takes place over all pairs of
positive integers i,j except i=m and j=n. Equations (6) and
(8) are valid provided the eigenvalue Amn is not repeated.

mn

Similarly, the first variation of an eigenmode w asso-
ciated with d non-repeated eigutivaLiu A 111 ,

mn wi iwmn6w = - (T w ,6 E T w) (9)

i,j Om,n ij - Xmn
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It is clear from Equations (8) and (9), that it is necessary
to know the complete set of eigenvalues and eigenfunctions for

llid S W t 111 ' X. L [ )'

For symmetric laminated plates, we can identify

T [a 2/ax 2  a 2/ay 2  2 a 2/axay] T (0)

T 2T* =, M = , =
mn mn

For the specific boundary conditions (2) and (3), we can se-
lect the operator E as:

D 11 0 D'

E D D22 D 26 (11)

[D16 D 262

where
D = D +2 D (12)
'C 12 66

Therefore the eigenvalues are functions of the five material
parameters DIl, D22, DK, D16 and'D26.

TH' ORTHOTROPIC SOLUTION

For onr linr ropi I.,iin.i -,.. i ( ,iJ)! ing st I ffnesses f16 and D26
v;anish. A (oijl rI.(, .. I 4 I ,,oi),nv.I Iiv, and vig(cnflncr ions can
b(' obt.,iincd LI IK dlsu v.iishcs. Thus we identify S with DK
and consider

DI , , m2wn=p) (13 )
11 xxxx U2 2 Wyyyy xmn (

quhjecr to tho .ipprnpriar,, hoind.ry conditions (2) and (3) as
simpliLied [ur 1n orLholtopiL plate. The solution, obtained
by separating variables, is

,,mn - (xw n x (X ) Y (X) (14)
m a n

D pm  D22 vnmn= 11 +2 (15)
mn a 4 b4

where Xm and Yn are the normalized beam shape functions [3] and
W and v their corresponding Crequencies, i.e.m n

xV 4 IV 4
- I X =Y - v Y =0 (16)m m m n n n

8
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IV

In Equation (16), ( ) denotes the fourth derivative with re-

spect to the argument of the indicated function.

The solution for the orthotropic laminate can be express-

ed as a Maclaurin series in D
K

a mna m 2
lmn mn a D D D

where (C) denotes evaluation of the indicated function at

D=O. The linear term is calculated by observing that

6E 1 0 0 (18)6E=aDK

0

and then substituting this result together with Equation (14)

into Equation (6) to obtain

amn/aD = 2 C c n/P a 2 b2  (19)mmt nn

where
W' Y] c (20

0i. : - (VXi .. = - (Y', Y'.) (20)
ij1 ij I J

The second derivative is also readily obtained by observing

that 62 E = 32 E/3DK2 vanishes identically. Now, substitution

of Equations (14), (15) and (18) into Equation (8) yields
2~C.' 2 c .2

=-4 n im nj
aD<2  Di('. -m )b~ 2 (v. -va DK 2 'j m~n Dll(W i4 _ 4 )b 4+D 22 ( V 4 _ 4 )a4 ( 111 1n (21)

The orthotropic natural frequencies Xmn become

44 4 4 )O -Ull .1 u lb 2 C : I /,I
mn 1  /M 22 In m K

Cm2c 2 D 23

- 4 im2 nj 2 2O(D, )44)4+D42( 44

i,j Am,n D1 1 (i. -im )b +D22 ( -v 4)a (22)

3
Equation (22) is exact to within terms of order DK . The

first three terms on the right-hand side of Equation (22) is
precisely the solution obtained by Hearmon 13] using an entire-
ly different approach. The-quadratic term in Equation (22)
represents a correction to Hearmon's solution. Routine calcu-
lations for a wide range of parameters D. and plate aspect

ratios R show that the second order corre tion is not only
negligible for the fundamental frequency of orthotropic plates,
but also for higher natural frequencies. The only exceptions

9
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occur for higher frequencies and select values of R, namely
those for which the denominator of the quadratic terms be-
comes small for some pair of indices i and j. This corre-
sponds to the t'i:.; wluii F l,.i tinn (13) admits repeated eigen-
values, that is, when the right-hand side of Equation (15)

has the same value for two distinct pairs (m,n).
-mn

Using the foregoing approach, the eigenfunctions w for
the orthotropic laminate can be shown to satisfy

P w = X Y - D . z .. X. Y. + (23)
m n K 1.j #i,n ijmn i J

where

2C. c= m nj (4
aijmn D 4 4 -2 4 4 2 (24)

DI( -U )R + D22(v -v

A few observations are in order. For most cases that we cal-
culated, the quantity ai mn DK was small compared to unity

for all i and j. In suc cases, the solution mn is a suffi-

ciently accurate approximation to wmn. Furthermore, in cases
when wmn cannot approximate mn, the terms _ijmn DK was found

to be comparable to unity only for one set of indices i and j;
more importantly, this term contributed a negligible amount to
the inner products required for subsequent calculations. Thus,
throughout the remainder of this investigation, we will sub-
stitute w for wmn in all inner products.

THE ANISOTROPIC SOLUTION

Like the orthotropic solution, the anisotropic solution is
developed by expressing it in a Maclaurin series. Here, the
parameters S are identified with D1 6 and D2 6 . Thus

aI 0A 1D2~D. 16 . aO_ 1 D26 + 2 D16
1l! 16 26 16

2- 2- (25)a2x 1 1  2 a2 x

D + 1 D16 D26 + "
2D26 aD 16D26

where the symbol C)denotes evaluation of the indicated func-
tion at the orthotropic solution D16=D2 6 =O.

Since the orthotropic solution is now completely known,
albeit approximately, each of the coefficients in the series
(25) can be evaluated. These calculations, when substituted

10
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back into Equation (25), lead to the desired closed-form ap-
proximation to the fundamental frequency, namely

4 l l44 l4 Cli
b 4)1 D P1 4/R + D22 V + 2 D C C

- 4 R-2Z Z[(Hilglj+Higjl)D 1 6 +(G i h j. Gi hj)R2D 2 6 1
2 x

[D11 (Vi4 1 4)+D 2 2 (vj 4-v 1 4)R
4 + (26)

2D R 2(C ii c - C 1 c1 1 )]
- 1

where

Gij = ( X ) gij = (Yi' Y ')

(27)

H. = (X', X!) h. = (Y', Y.)

Apart from the orthotropic approximations employed in this
derivation, Equation (26) is correct to within quartic terms
in the coupling stiffnesses.

Inclusion of higher order terms in the Maclaurin series
is unlikely to yield any significant improvement in the accu-
racy of the approximation (26) unless the orthotropic solution
is also improved. The only exception is the simply-supported
plate for which the beam shape functions provide the exact
orthotropic solution. Nevertheless, even for this plate, the
addition of higher order terms negates the simplicity of the
approximation. Furthermore, as the numerical illustrations in
Tables I-11 demonstrate, Equation (26) is remarkably accurate.

NUMERICAL EXAMPLES

In the following tables, the validity of Equation (26) is
established by comparing the fundamental frequency calculated
from it with the fundamental frequency obtained numerically.
Since Equation (26) uses the vibrating beam shape functions,
the numerical approach selected was the Ritz method using these
same shape functions. Thus the fundamental mode is expressed

N N
w = .Z a Xi(x/a) Y.(y/b) (28)

11j=l iji 1

It is convenient to introduce the following non-dimension-
al fundamental frequency.

11
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k 1 2u h3  (29)

where U is an invariant material property [2] and h is the
common thickness of the plies.

Results are presented for balanced symmetric four-ply plates

[e/-el-e/e]. Each table includes results for typical boron

epoxy (B/E) and high modulus graphite epoxy (G/E) defined by
the following data.

B/E G/E

EI /E2 10 40

E I/G12 40 80

V 1 2  .30 .25

The tables have been developed for different boundary
conditions, whose nomenclature is S for a simply supported
edge and C for a clamped edge. The first letter denotes the
support condition on the edge x=O and the subsequent letters

are for edges proceeding counterclockwise around the plate.
For example CCCS means clamped on all sides except y=b where
it is simply supported. The columns labelled Rl are calcula-

ted by the Ritz method with N=ll i.e. 121 terms in Equation
(28). In most cases, the Ritz method has converged with N=11;

in those cases for which convergence is not evident for N=11,
comparison with the N=7 and N=9 term solutions suggests that
the indicated value is within 1% of the correct frequency.

It should be observed that in all cases presented the

approximate solution (26) is within 2% of the Rayleigh-Ritz
solution, and often much better than that. Calculations for
other boundary conditions and other material data do not al-
ter this conclusion.
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TABLE I: RESULTS FOR CCCC PLATE

B/E G/E

a0 k k kk

R=1

0 84.17 84.19 84.28 84.30

15 82.26 82.38 81.59 81.79

30 78.65 79.19 76.62 77.49

45 77.00 77.76 74.46 75.59

R=5

0 25.28 25.28 13.64 13.65

30 31.51 31.61 25.74 25.86

60 61.21 61.26 62.95 62.99

90 78.65 78.66 82.54 82.54

TABLE II: RESULTS FOR SCSC PLATE

B/E" G/E
0° ik 11 k 1

R=1

0 80.82 80.83 83.33 83.33

30 74.27 74.40 75.47 75.62

60 57.36 57.96 55.05 55.93

90 45.33 45.36 39.96 39.97

R=5

0 11.81 11.81 6.94 6.94

30 15.67 15.87 13.44 13.65

60 27.64 27.73 28.33 28.42

90 34.80 34.81 36.46 36.46

13



308 Computer Aided Optimum Design of Structures

TABLE III: RESULTS FOR CCCS PLATE

B/E G/E
0 0 k k 1 1  k 1

R=1

0 61.84 61.87 59.34 59.36

30 64.70 65.44 61.54 62.69

60 75.01 75.42 74.23 75.27

90 82.10 82.13 83.70 83.72

R=5

0 25.16 25.16 13.42 13.42

30 31.19 31.50 25.64 24.76

60 61.19 61.24 62.94 62.99

90 78.64 78.65 82.53 82.54
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ABSTRACT

A new method is presented to deterr:ine approximate closed-
form solutions for the eigenvalues of self-adjoint structures with
non-uniform stiffness and mass distributions. The distributed
parameter eigenvalue equation is cast into an equivalent discrete
formulation with an infinite number of degrees of freedom. The
resulting stiffness and mass matrices are each decomposed into two
matrices, one diagonal and the other with zero diagonal elements.
Sensitivity derivatives are used to expand the eigenvalues in a
power series of the zero diagonal matrices.

INTRODUCTION

Eigensensitivity methods have been ised primarily in optimum
design or reanalysis of structures. Recently, these methods have
been used to obtain approximate closed-form solutions to specific
eigenvalue problems (1]. In this paper, eigensensitivity analysis
is used to obtain a simple expression which approximates the
eigenvalues for a wide-class of self-adjoint eigenvalue
problems.

Consider the eigenvalue problem in abstract form

T E(S) T ui - X iM(S) u i  (1)

subject to appropriate mixed boundary conditions. Here, T and T"
are L 2 adjoint differential operators, E is the positive, symmetric
stiffness operator, M is another positive symmetric operator and
S denotes a collection of parameters upon which both E and M
depend. Furthermore Xi is the ei.nvalue with associated
eigenfunction ui.
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There are many ways to represent Eq. (1) by an equivalent
discrete system. In this paper, the Rayleigh-Ritz method will be
used. If ('n) is a complete kinematically admissible set of basis
functions, and

u. = Z U. • (21 in n (2)

then stationarity of the Rayleigh quotient requires

K a X ima1  (3)

where the components K.. and b- of the stiffness matrix K and the
matrix M respectively satisfy

Kij (T4i, ET .) (4)

MJ 1 iJml

Here, ( , ) denotes the L -inner product. Also a. is the n-th
component of the infinitely dimensional eigenvectorgi

FORMAL SOLUTION

It is desired to solve Eq. (3) for the eigenvalues \. Toward
this end it is convenient to introduce parameters S and S2 and the

one parameter family of matrices K (S ) and M (S2) defined by

K (S) = KD + SAK (5)

1 (S2 ) = M D + SlaM

In Eq. (5), XD and M D are diagonal matrices whose components
consist, respectively, of the diagonal elements of K and M; also

AK and 6M have zero diagonal elements, and off diagonal components
equal to those of K and M, respectively. Evidently,

-% °

K (1) = K M (1) = M (6)

Consider the eigenvalue equation
A -1 "' -1 A

1i (SI'S 2 ) = XY(SI'S 2) K (S1) M (S2 ) Gi (SitS 2 ) (7)

if S IM S2  0, and M-1 are diagonal, and therefore Eq. (7)
readily admits the solution

A ~ -1A
Xi(0,0) - Kii Mii I G.(0,0) = M-  e (8)

' 1 ii i
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where e. is the unit Cartesian base vector.
1

Equation (7) is a special case of the eigenvalue equation
discussed by Reiss [2) in which an explicit representation for the
variations of the eigenvalues and eigenvectors was determined. In

the context of Eq. (7., these variations become
A '= a. a~a 6Si .- &a.

6Xi i I I i _1

A A A 2 (9)
2 (Xi GnAMO£i6S-C- n6 i 6 K O

6 X 2 Z
1 ~ - X .

n 1
A (10)

26Xi aiAMai6 S2

provided the eigenvectors Gi are normalized with respect to M.
Furthermore, the variations (9) and (10) satisfy

X i(S 1 +6S 1 1S2 + 6S2) - i i(S 1 S2 ) = X i + 6 X i + .. (11)

Since Xi (1,1) Xi , the solution for Xi may be obtained by
substituting Eqs. (9) and (10) into Eq. (11) and evaluating at
S 1 - S 2 - 0, 6S1 = 6S2 = 1. Thus if only second order terms in
6 S i are retained,

-1 -2 (M..AK - K. M ) 2

M.=K..K.. -M.. fi 11 nl (12)
1 11 11 i n~i M.. K - Mn K..

1nn nn

Even higher order variations could be calculated, however, only at
the expense of the simplicity of the representation (12).

EXAMPLE

Consider the torsional vibrations of a fixed-free shaft whose
radius r varies with the axial dimensions x. The non-dimensional
eigenvalue equation is

- (r 4 (x) u')' = X r 4 (x)u

where u(O) - u (1) = 0 and ( ) = d/dx. A convenient basis is

1

n = sin ( n - i ) Trx n=l,2.....

An approximate solution for X can be oktained from Eqs. (4) and

(12) for any r(x). Assuming r= a-x, a ? 1, the approximate
eigenvalues obtained from Eq. (12) are tabulated in Table 1 for
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two different values of a. Note that as a-o , the shaft tends to
a uniform one and ln approaches the exact eigenfYnctions. The
first column is the zeroth order solution Kfi Mi obtained by
ignoring the off-diagonal elements of M and K. The next column
represents the second order correction obtained by adding 162'.
to the first column. Finally, since this tapered shaft admits an
exact solution, the last column contains the exact eigenvalues.

Table 1. Approximate eigenvalues for shaft

am1.5 af=f3

1 5.417 5.211 5.239 3.40! 3.371 3.373
2 24.13 25.24 25.88 23.01 23.17 23.19
3 63.56 63.96 65.55 62.48 62.60 62.68
4 122.8 123.1 124.8 121.7 121.9 121.9
5 201.7 202.1 203.8 200.7 200.8 200.9

Other illustrations, such as the vibration of non-uniform beams
and buckling of bars with variable cross-section can be solved with
similar ease and accuracy.
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ABSTRACT Huseyin (1973), are among the first to develop

explicit closed-form expressions for the design
A new method is presented to determine derivatives of self-adjoint and non self-

approximate closed-form solutions for the adjoint systems, respectively. Sensitivity
complex-valued frequencies of moderately damped derivatives for distributed parameter systems
linearly elastic structures. The approach is were presented recently by Reiss (1986) by
equally applicable to finite degree of freedom casting the governing self-adjoint differential
systems and distributed parameter systems. The equation into integral form using Green's
damping operator is split into two components, function.
the first of which uncouples the quadratic In this study, the sensitivity derivatives
eigenvalue equation, and the eigenvalues are of the complex eigenvalues associated with
expressed as a power series in the second viscously damped structures are explicitly
component of the damping operator. Specific determined. Explicit dependence of the
numerical examples include both finite degree *igenvalueS and eigenfunctions upon boundary
of freedom and distributed parameter systems. conditions is eliminated by presenting the
It is shown that for moderate damping, that is, quadratic eigenvalue equation in integral forr
when the second component of the damping For simplicity, it is assumed that tne design
operator is small, but not negligible, the variables affect the eigenvalues and eigen-
series solution truncated after quadratic terms functions only through the damping operator.
provides an excellent approximation to the true
eiqenvalues. FRORLM STATEMT

The closed, bounded and regular domain of
INTRODUCTION an elastic structure is denoted by a + i, where

the interior of the domain is Q and Its
Eigensensitivity analysis is an exception- boundary is b. Furthermore, a is the union

ally useful tool for the reanalysis of eigen- of two regular complementary subsets and
values and eiqenvectors. Although it is 302 . A typical point in n + an is denoted by x
essentially a perturbation technique, such and a typical time is denoted by t. The design
methods have been used successfully to variables, which may depend upon x but not t,
determine optimum igenvalue designs as well as are collectively denoted by S(x).
approximate closed-form expressions for the The unforced motion of a linear eastic
eigenvalues of structural systems. structure vibrating in a viscous medium (dis-

In igensensitivity techniques, the tributed damping) can be represented by the
igenvalues and eigenvector are assumed to be equation
piecewise differentiable functions of some
specified set of parameters, called design T*ETu + C(S) + Mu - 0 (x,t)cnx (0,-) (la)
parameters. It is the derivatives of the
eigenvalues and eigenvectors with respect to subject to the mixed boundary conditions
the design parameters that are sought. For
systems with a finite number of degrees of B u - 0 (xt)c an! x [0, (b)
freedom, Fox and Kapoor (1968) and Plaut and
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B*ET u - 0 (x,t)C 3 2 x (0, -) (ic) DESIGN DERIVATIVES

Here, T and T* are L2 adjoint differential The eigenvalue equation (3) is not self-
operators, B and B* are the corresponding adjoint and, therefore, the eigenfunctions are
adjoint boundary operators, and the positive, not orthogonal in any useful sense. Following
symmetric operators E, M and C are, respec- Plaut and Huseyin (1973), Eq. (3) can be re-
tively, the stiffness, mass, and damping duced to standard form by introducing V, - - V
operators. The response u depends upon both x and the identity operator 6 with respect to
and t, and the dot above a symbol indicates its . , )n. Thus Eq. (3) becomes
time derivative.

The eigenvalue problem under consideration U1 - "Wi (G, C U1 + M Vi)n
is obtained by substituting the separable form (6)

t Vi a ( 6, U3i)n
u(x,t) -U (x) 

V

In matrix form, Eq. (6) is
into Eqs. (la,b,c). This results in the

quadratic .igenvalue equation Ui) _ 0.) m (U,,

wj 1 U, x E n (2GT*ZT Ui - "wi C(S)Ui U (2a) (Vi " 0 1 v (7)

a u - 0 x E ain (2b) where the operators G" and S' are defined

S*ET U, - 0 X E "2 (2c) through (G ,

In Eq. (2), -1 is the complex-valued eigenvalue (8)
and Ui is the associated eigenfunction. Fol- . ( 6
lowing Reiss (1986), Eqs. (2) are recast in the In Eqs. (8), G is the same sef-adjoint Green's
simpler single integral equation function appearing in Eq. (3).
U1 (y) - "wi (G(.,y) , C(S) Ui)n - w iG ( ',y) , MU) The first variation of Eq. (7) is now

(3) desired. Thus it is assumed that S changes by
6S, so that the first variation of Eq.(7) is

where 0
(a , b ) .- Q a b d x 6 ( U i + _i G , 6o UC, ) F )

and G is the Green's function associated with Vi 0 •-1 0 v1 HI
the operators on the left side of Eqs. (2), and
a is the complex conjugate of a. where

It is clear that the eigenvalues w, and U (G CU:
,igenfunctions Ui are functionals of the design - 6w (U\- (G .
variables S, and they depend on S only through H V - / (10)
the damping operator C. If S is changed by an I
amount 6S, then w and Uj will change by a The solution to Eq. (9) can be conveniently
and AU1 , respectively, where obtained by introducing the eigenvalue equation

- W1 (S + as) - W1 (S) which is adjoint to Eq. (7). Toward this end,
(4) define the eigenvalue problem

AUI - U 1 (S + S) - U 1 (S) X C -1 G. X

Assuming, wi possesses at least two Gateaux Y M ) (0 Y (11
derivatives with respect to S, and Ui at least 0 0

one Gateaux derivative with respect to S, then T
Eq. (4) may be expressed where (X1 Y ) is the adjoint eigenvector It

is straightforward to show that Eqs. (? and

i - ai +  62W 30(S (11) admit the same *igenvalues -, and that
2 the adjoint eigenfunctions are orthogonal in

dUl - 8U, + 0(6S ) the sense that

where dwi and Ui are linear in S and 2a is oc) Vj
quadratic in 6S. A major objective of thispaper is t determine explicit representations for i~j. At this point, we are at liberty to
fopr, n in de termionte eglicitrepresen- s arbitrarily select two normalization factors,
for wi , 6fi and Ui in terms of the eigen- one for each of the eigenvectors. Consequent-values, eigenfunctions and operators appearing lwtot13 ngnrltcestcin E. (a).ly, without loss in generality. cne set zf
in Eq. (2a). normalization factors will be selected so that

21



Ul W. W

(xi i) " G 6ij (12) i = ( (G 6cu44 W U a U~V. r~iW~W l ' fl~2n H(20)

where Sij is the Kronecker delta.
In order to compute the first variation

6wi, we observe that Similarly, it can be shown that the first
- Fi) variation of the adjoint eigenfunction :X,

(Xi Y i) "kHi) 0. (13) satisfies

Equation (13) is established by substituting
Eq. (9) into the left side of Eq. (13), and
changing the order of integration in the iX. = w (X
resulting double integrals using the symmetry 6X i ( G6n)Q)n Xn - a
properties of C, M and G. By substituting Eq. (21)

(10) into Eq. (13), dwi is immediately deter- The constants aii, as yet, are indeterminate.
mined. Thus This is because only one normalization scheme

has been involved for the two sets of eigen-
Swi - wi2 (X, (G,6CUi) ) (14) functions. Prescription of the second nor-

malization factor will render all determinate.

Equation (14) provides an explicit represen- 2 The second variation of the eigenvalue
tation for thepfrs varin opliithep - 6 wi can be computed directly from Eqs. (14),eigenvalue. (20) and (21). Although some manipulations are

The first variation of the eigenfunctions required, it is nevertheless straightforward to
are not so simply obtained. By virtue of Eqs. establish that
(10) and (14), the right side of Eq. (9) is
explicitly known. It therefore remains to
solve the inhomogeneous linear integral equa- 2 3 2 + 2 .
tion (9) for a(Ui Vi)T. Toward this end, let 2 Q
the solution be represented in terms of the
eigenfunctions, i.e.

(+ 2 w1 ~i 2 2 Z 1 n (Xi (G, CUn)0 ) r (n (G, scu))
Sv n" hi v (22)

Further, let (Fi ii)
T also be expanded in terms It is interesting to note that neither the

of these same eigenfunctionb. Thus first nor the second variation in the eigen-
value depends upon the particular second nor-

malization factors selected for the eigen-
Hi - ( f n (16) functions.

APPLICATION

Now substituting Eqs. (15) and (16) into Eq.
(9), simplifying the result using Eq. (6), and Equations (14) and (22) provide, in very
comparing term by term, we find that general form, explicit expressions for the

first and second variations of the complex
f=f frequency for unforced viscously-damped

aii =i- (17) vibrations of elastic systems. Specific usage
of the equations will vary with the applica-
tion. In this section, we shall be concerned

The coefficients fi, obtained directly from with the development of a closed form approx-
Eqs. (12) and (16), satisfy imation for wi for structures in the presence

Fi of "moderate" damping.
fni" (i Yn) ' i (18) Without loss in generality, we may(\H, irestrict our treatment of damped elastic

NoW, substitution of Eqs. (10) and (14) into systems to consideration of the quadratic
Eq. (18) immediately yields eigenvalue equation

nIi Wi 2 (23)

f ( C (19)

0 n-i where G is a diagonal matrix specified in terms
of the system's natural frequencies * Speci-

The first variation 6Ui, obtained from Eqs. fically,
(15), (17) and (19), becomes -2

Gij - -2ij (no sum) (24)
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Since there are an infinite number of natural Clearly C (1) - C. Let L(S) and s,(S) be,
frequencies associated with vibrating distri- respectively, thi eigenvectors and eigenvalues
buted parameter structures, G will also contain associated with 6(S). Now
an infinite number of elements. Likewise, each 2
eigenvector 2i is an infinitely dimensional i(S) . z.(0) + ' .(0) S + "(0)S 2 +
column vector. The matrix Q has elements

where P(l) is the desired eigenvalue
Cij - (Wi, C Wj)n (25) Therefore

where Wi is the normalized mode shape corre- W - (0 + .i'(0) + i i"(0) . ..... (32)
sponding to the (undamped) natural frequency01" To compute i(0), set C - in Eq. (23),

In order to establish the reduction of Eq.

(3) to the form (23), it is necessary to recall thereby uncoupling the equations. The solu-
the eigenvalue equation tions, obtained immediately, are

2 )2( 0 ) - - i C 1 1  ± (C 1 ] - 2 ) ( 3 3 )Wn " nn (G, M Wn)Q (26) ± i 4i(3

and the orthonormal relations Alternatively, ;i(D) are the eigenvalues
obtained by ignoring the off-diagonal elements

(Wp, M Vn)Q - 6pn (27) in the damping matrix C. Indeed, Hutton (1981)
suggests the approximation

for undamped vibrating elastic structures. It
is assumed that On and Wn are known for the Wi  W i(0) (34)
structure under consideration. Since the set
of eigenfunctions (Wn) form a complete basis, may be used whenever the off-diagonal elements
the complex eigenfunction Ui may be expressed of C are sufficiently small. Finally, for

future reference, it is noted that the eigen-
U, (28) vector Si(0) associated with .(0) has

components which may be taken as the Euclidean
unit base vector , so that

where each a. is a complex-valued constant.
Now substitute Eq. (28) into Eq. (3), take the sip(O) - sip , i(O) " e (35)
L2 inner product of each side of the resulting
equation with M Wp, change the order of the It now remains to calculate the sensi-
double integrals that arise and simplify the tivity derivatives appearing in Eq.(32). The
result using Eqs. (26) and (27). The resulting first derivative ;'(0) is computed directly
equation is from Eq. (14) by observing

" -2 Ea C W2 -2 (29) 6w .  '
Q. - -n in C " - 1 lip 1 i 6S 6C - ac S (36)

which is precisely Eq. (23) expressed in compo- Further, a comparison of Eqs. (23) with Eqs.
nent form. (3), (6) and (11) reveals that M-1 and

It should be pointed out that with similar
arguments Eq. (23) can also be established for Ui - G 3 (37a)
discrete finite-dimensional oigenvalue problems " ~  -
as well. In this case the L2-inner product is Vi = - i (37b)
replaced everywhere by the usual dot product of
complex vectors. Xi(37c)

We now take up the development of an
approximate solution to Eq. (23) using the Y -" G Xi (37d)
eigensensitivity theory developed in the
previous section of this paper. Toward this Since (O - Q is a diagonal matrix,
end, it is convenient to define a one parameter Q C(0) - C(0)9, and Eqns. (35) and (37a,c)
family of damping matrices d (S) where imply that

C (S) - CD + S AC (30) Xi (0)=u1 e (38)

in which CD contains only the diagonal elements where w1 is a complex-valued scalar. It can
of C and ig contains only the off-diagonal ele- also be established directly from Eqs. (35) and
ments of C. Thus (37b,d) that

CD  
- Cij 61j (no sum) Y (0) - - 1 (0) G

1 (39)
Cij - Cij iiJ (31) Vi(0) -- (0) t

0o i=j
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n-i, it must be recognized that there are two
The scalar wi can be computed from the ortho- values for&Zn (0) corresponding to each n which
normality condition (12) and Eqs. (35), (38), must be included in the summation.
and (39). Thus Also, it should be noted that the

2 2 a2 sensitivity derivatives are evaluated at S-0.
Pi " /(2i - (0)] (40) These derivatives exist only for distinct

zeroth order roots Z 0), whether complex or
After substituting Eqs. (24), (36) and real-valued. And finally, it can be easily

(37a, c) into Eq. (14) shown that the other terms appearing in the
denominator of the expression for w (0),

wi'(0) - g(0) ! • (41) namely 0 1- oz J(0) never vanish.

results. After carrying out the indicated WLZ$
operations in Eq. (41), we obtain

2 a (a) As a very simple illustration, consider
I i i the elementary non-dimensional quadratic

Equation (42) validates Hutton's (1981) eigenvalue equation corresponding to the two-

approximation (34) whenever aQ is very small, degree of freedom system in which C 11= ,

for, in this case, the error in Eq. (34) is of C 22 - 2, C 12 - -0.75, n J - 2, n J - 4. The

order (aC)2 . zeroth order approximation, obtained by

It still remains to calculate ai"(0) from ignoring C 12, is
Eq. (22). We observe that

w (0) - - 0.5 1.9365 i (46)=t= i''(0) w2(0) - -1.0 ± 1.0000 (i) (6

and (43) On the other hand, the frequencies calculated

62C- 0 from the second order approximation (45) are

Now, we combine Eqs. (22), (24), (33), (35), I  -0.3313 1 1.8639 i
(36), (37a,c), (40), (41) and (43) to obtain (47)

w2 0 -1.1688 ± 0.9438 i

w((0) ) (C.) 2  By way of comparison, the exact eigenvalues are.2.
i2 -(O) i ) wi - 0.3434 1 1.8863 i

an(0) 1 W2 - -1.1576 ± 0.9146 i

2 _ a2(0)  1
n nObviously, the second order approximation (47)

is far superior to the zeroth order
Finally, after substituting Eqs. (42) and (44) approximation (46). As a general rule, the
into Eq. (32), we obtain the result most important value is the smallest (in

magnitude) real component of wi, in this case
3AC ) Re (wl). The zeroth order approximation for

(0. (0) + 2 ( )2n(O) Re (WI) is in error by 50.9%, while the second

(0) 7 Z -- order approximation for Re (w,) is in error by
i 0n "'n(0  3.6%. The accuracy of Eq. (47) is somewhat

(45) remarkable considering that C 12 is not small
compared with either of the diagonal elements.

where ;1(0) is given by Eq. (33). If desired, However, it can be shown that for systems with
two degrees of freedom, Eq. (45) is accurate to

the approximation (45) can be made more within terms of order C)4  and hence the
accurate by including still higher order wihintersnof ode serie andrhencete
derivatives of & I(S). In this case, &3 w i can rapid convergence of the series approximation
be calculated directly from Eqs. (20-22). (32).
Although the procedure is straightforward, the
final expression for OAatis cumbersome and (b) A somewhat more involved quadratic
consequently will be omitted here. eigenvalue problem is provided by the four

A few observations regarding the usage of degree of freedom system in which C1. - 2,

Eq. (45) is in order. The frequencies &1(0) C 22 4, C33 -1, C44- 3, Cij 0.5 for

always occur in pairs: if they are complex- i o J, and a J- ni - 2, 0J - o J- 3. In this

valued, then the pairs are complex conjugates; example, the off diagonal damping elements are

but if they are real valued, then the pairs small, but not negligible, compared to the

generally consist of distinct negative numbers. diagonal damping coefficients. There are now

When summing over all values of n, other than four pairs of solutions w i, of which one pair
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is real-valued and the others are complex- ZIV + 200Z + o2z - 0
valued. The zeroth order solution, obtained
immediately from Eq. (33), is Z(0) - Z' (0) - Z"(1) - Z"' (1) - 0 (54)

WJ(0) - -1 1 i 0 - 0 H (y- 1/2)
W2 (0) - -0.5858, -3.4142 (48)
W3(0) - -0.5 ± 1.6583 i Here, 0 is the desired eigenvalue, Z the
u4(0) - -1.5 1 0.8660 1 corresponding eigenfunction, and 2p is the

damping operator.
In order to use the quadratic approx-

imation (45), Eq. (54) must be cast into the

However, using the second order approximation, form (23). It is therefore necessary to first
the solution is obtain the natural frequencies fln and corre-

sponding mode shapes Wn(Y) for the undamped
t -1.0094 ± 1.06561 system, i.e. 0 - 0. These results, however,

w2  -0.5718 , -3.5332 (49) are readily available. If we let
W3 m -0.4493 2 1.66051
w4 O -1.4888 ± 0.76161 4 ij - fi(y) WJ(y)dy (55)

It can be shown, although with considerably the damping matrix becomes
more effort than was required in the two-degree
of freedom example, that the exact frequencies C ij - 2 p. n j (56)
are

Direct computations of Ii" provide specific
W, - -1.0142 t 1.0506 1 values of Cij. The zeroth order frequencies
W2  - -0.5744 , -3.5062 (50) now become
)3 W -0.4377 ± 1.6584 1 4n
W4 M -1.5077 ± 0.7591 i a (0) - - -, . - (57

Once again, the largest error in the zeroth while the second order approximation to the
order frequency occurs in the least damped frequencies can be obtained from Eq. (44) using
frequency - in this case, Re (w3). Here, the specific values for o .
quadratic approximation produces an error of Results for the first six eigenvalues are
2.7% compared with 14.2% for the zeroth order presented in Table 1 for light damping P. - 1.5
approximation. and moderate damping A. - 3.0. For 0. = 1.5,

the zeroth order frequencies (57) are very
(c) As an illustration of a continuous system, close to the more accurate second order
consider the unforced vibrations of a uniform approximation, denoted by at . The maximum
cantilever beam subject to distributed damping. difference in the real parts of the frequencies
Specifically, the quadratic eigenvalue equation occurs in 03, the least damped mode, and is
is approximately 4%.

Fir 0. - 3., the difference between 0 i(o)
CIUV(x) + C(x)wO(x) + PwU(x) - 0 (51a) and a i is more pronounced. As shown in Table
with boundary conditions 2, both eigenvalues corresponding to aI are

real, while the remaining ones are complex-
,,, (valued. Except for the second and third

(0) - '(0) - U"(L) - U "(L) - 0 (5ib) frequencies, the quadratic approximation a*
adds relatively little to the much simpler

It will be assumed that uniform damping occurs solution a1 (O). But the Re (03(0)) predicts
over the outer half of the beam, so that 16% more damping than Re (03 )1, while the

Re (8j(0)) predicts 10% less damping than
C (x) - C, H (x-L/2) (52) Re (a ).

in the absence of an exact solution to Eq.
where Co is the damping coefficient and H is (54), it is difficult to precisely determine
the Heaviside function. Further, EI is the the error introduced by truncating the series
beam's uniform flexural stiffness, L is its (32) after quadratic terms. The exact solution
length, p is its mass density per unit length is the limiting case, as N - X, of an N degree
and U is the response eigenfunction. It is of freedom system obtained by considering the
convenient to cast Eq. (51a) into non-dimen- sub-matrices of C and G in which i, j-1 .... N.
sional form by setting Unfortunately, iZ is difficult to solve,

exactly, the quadratic eigenvalue problem when

Z U/L , y x/L, 02(- L w4 [wEI] N is not a small number. Nevertheless, by
examining the exact eigenvalues for the finite

1 - C/2 VA-i , C,/2 (53) dimensional problem for small values of N, an
assessment of the relative accuracy of a * can

so that Eqs. (51a,b) and Eq. (52) become be made.
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TAAKT 1: SEAORI AND SECOND ORDR E NVALUI TABU 3: XAT SIGQXWM=, Olt OF
FOR D.. 1.5 TCTEU,... . 0

± i (0) O* N-2 N-3 N-4 N-5 N-6

-5.137, -5.147 -5.150 -5.151 -5.152
-1.441 -0.700 -0.699 -0.699 -0.699 -0.699

2 -0.838 : 4.6191 -0.858 t 4.684i R( 2 -1.605 -1.934 -1.925 -1.942 -1.942

3 -0.739 i 7.8201 -0.712 i 7.716i Im{W 2) 4.355 4.659 4.661 4.673 4.673

4 -0.748 1 10.9701 -0.752 t 10.9961 ReO 3) - -1.145 -1.208 -1.188 -1.190
Im(G3) - 7.132 7.273 7.258 7.261

5 -0.750 ± 14.1171 -0.744 t 14.058i a 4) - - -1.442 -1.569 -1.559

6 -0.750 ± 17.2621 -0.752 ± 17.2791 Imfa 4) - - 10.678 11.047 11.033

7 -0.750 ±204071 -0.747 ± 20,365i Re a 5) - - - -1.376 -1.429
- 0 , I I - - - 13.566 13.782

Rea61 - - - - -1.455
IsUi) - - - - 16.957

TABLN 2: ZEROTI AD SICOND ORDER ZIGENVALUES
TR Pon3. We have presented an approximate solution

to the quadratic eigenvalue problem by expand-
ing the eigenvalues in a series about AC-0 and

± 4 (0) truncating after quadratic terms. It was
shown, by examples, that whenever AC is small

1 -4.991 , -0.704 * -5.187, -0.699 but not negligible, the series solution (45)
provides reasonable estimates of the true

2 -1.676 ± 4.385i -1.867 t 4.623i eigenvalues even when the solution obtai 3d by
ignoring AC is substantially in error.

3 -1.479 ± 7.7141 -1.273 ± 7.3411

4 -1.497 t 10.8931 -1.526 ± 10.9941 X
This study was supported by the Air Force

5 -1.501 1 14.057± -1.449 t 13.8241 Office of Scientific Research (AFSC) throu h
Contract No.* T enited

6 -1.500 ± 17.2131 -1.511 t 17.277i States Gover a t or ed to reproduce
and distribute reprints for governmental

7 -1.500 ± 20.365± -1.475 t 20.202i purposes notwithstanding any copyright notation
hereon.

The exact frequencies for the reduced N-
degree of freedom problem, obtained by solving
the characteristic polynomial equation of order Hutton, D.V., 1981, Applied Mechanical
2N, are listed in Table 3 for N-2 through N-6. Vibrations, McGraw-Hill Book Company.
A cursory examination of the values for a a4 I
a5 and 0 suggests that the corresponding Fox, R.L. and Kapoor, M.P., 1968, "Rate of
values o the second order approximation ± , Change of .igenvalues and igenvectors," AIAA
shown in Table 2, are very reasonable estimates Journal, Vol. 6, pp. 2426-2429.
of the exact distributed parameter eigenvalues.
Table 3 also suggests that the exact eigen- Plaut, R.R. and Huseyin, 1973, "Derivatives
values for a2 and a 3are -1.94 ± 4.671 and of Eigenvalues and Eigenvectors in Non-Self-
-1.19 t 7.26i, respectively. Thus the real Adjoint Systems," AIAA Journal, Vol. 11,
part of these zeroth order approximations pp. 250A251.
differ by 14% and 24% from the exact values, pp. 250-251.
while the second order approximations produce Reiss, R., 1986, "Design Derivatives of
errors of only 4% and 7%, respectively. Eigenvalues and Eigen-functions for Self-
Similarly, the error in the imaginary parts of EigenaDustand Pigee-fuSctims, frs A
a2 and a3 drops from 6% for the zeroth order Adjoint Distributed Parameter Systems, AIAA
approximation to about 1% for the second order Journal, Vol. 24, pp. 1169-1172.
approximation.
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ON THE FUNDAMENTAL FREQUENCY OF

SYMMETRIC RECTANGULAR LAMINATED

PLATESt A NEW CLOSED-FORM
APPROXIMATE SOLUTION

Robert Reiss, Oscar Barton, Lewis Thigpen and Win Aung
Department of Mechanical Engineering

Howard University
Washington, D.C. 20059, USA

and

Bo Qian
Department of Mechanical Engineering
University of the District of Columbia

Washington, D.C., USA

ABSTRACT simply supported (3) and clampeo edges (4)
by assuming a linear relationship between

A new closed-form approximation for the the eigenvalue and the flexural
fundamental frequency of symmetric stiffnesses. A different approach was
rectangular laminates subject to all adopted by Reiss and coworkers. Reiss,
combinations of hinged and clamped Ramachandran and Qian (5), using exact
boundary conditions is presented. The sensitivity derivatives, obtained an
distributed parameter eigenvalue equation approximate solution for the natural
is cast in an equivalent infinitely- frequencies of a four-layer symmetric
dimensional discrete form. The stiffness simply-supported angle-ply laminate. The
and mass matrices are each decomposed into frequencies obtained were presented in the
the sum of two matrices, one of which is form of a truncated Fourier series in the
diajonal while the other contains zero ply-angle. Reiss and Oian (6,7) then
diagonal elements. Design sensitivity generalized those results to include all
analysis is used to expand the desired symmetric laminates, none of whose edges
eigenfrequency in a Maclaurin series of were free.
the zero diagonal matrices. The general
formula thus obtained is then specialized In the present study, a now and much more
to rectangular 3YMetriC laminated plates, general eigensensitivity-based method for
The remarkable occuracy of this new obtaining approximate formula for the
formula is established by numerical frequency respanse of structures is
comparisons of results calculated from it employed. The method, recently developed
to those obtained from the conventional by Reiss, Qian and Aung (6) for damped
Rayleigh-Ritz method. systems and Reiss and Qian (91 for self-

adjoint systems requires recasting the
INTRODOCTION distributed parameter equation into an
Methods to accurately determine the equivalent discrete set of algebraic
fequencs o laminratel te p te2 sequations. The new formula for the
frequencies of laminated plates is fundamental frequency of symmetric
necessary for both analysis and design of laminates is obtained by specializing the
symmetric laminated composite plates. general result {9) to the specific problem
While exact closed form solutions for the under consideration.
natural frequencies are available only for
simply-supported orthotropl laminates SIVO oPP"1005 RRSULT$
(1], very accurate approximate solutions
are also available for orthotropic At this point, it is useful to review the
laminates meeting other boundary general methodology previously developed
conditions 121. by Reiss and Qian (9).

For more general anisotropic plates, the The general eigenvalue problem under
literature contains several closed form consideration is representable in the form
approximations for the fundamental
frequency. Bert obtained simple formula
for symmetric rectangular laminates for
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In view of Equation (5), it is evident theTnu 1 -* u A n ( [K° and (W) are diagonal matrices, while
(k) and (m) contain only zero values on
the diagonal. It is convenient to

subject to appropriate mixed boundary consider IL to be a scalar-valued function
conditions. Rere T and T* are LI() of the arguments Eke and (m]. Indeed, if
adjoint differential operators, E and M ) is expanded as a Maclaurin series in
are, respectively, the stiffness and mass these arguments, it can be shown that )
operators which are each positive and satisfies 19]
symmetric with respect to the L,(Cl) inner
product. Also Xi is the eigenvalue
associated with the eigenfunction Us. * -

While there are many ways in which n K1 K4. - Nn R'
Equation (1) may be converted into a n11
discrete form, the Raleigh-Ritz method is
particular useful in view of the (7)
objectives of this paper. Thus, let M) Equation (7) is exact to within the oddr
denote a complete set of kinematically of terms retained in the series. Higher
admissible basis functions, so that order terms in the expansion may be

readily calculated; however, only by
compromising the simplicity'of Equation

ul 6J. t. (2) (
n-l SYflUUTRIC LAMIKAT!D PLATES

The eigenvalue equation for a freely

Stationarily of the Rayleigh quotient vibrating symmetric laminate is
requires

[AI (e9)- A (ad-is (3) iu- * Dl3Urnuy 2(D12 * 2D,41 u,"
* 4 *D1U=W & 4 D24 U , uW u

vhere the square, infinitely dimensional (8)
matrices (K) and (NJ contain elements

where u denotes the mode shape, oa is the
S(TgjBET~) corresponding frequency, p is the mass

(4) density. D1l are the flexural stiffnesses
(1), x and y are the coordinates in the

. M(OP) plane of the laminate, and indices
following u denote differentiation with
respect to the indicated argument.

In Equation (4), (.,.) denotes the L,(a)
inner product. rurther 06 is the n-th In order to apply Equation (7), it is
component of the infinitely dimensional necessary to cast Equation (8) in the form
column vector (al. of Equation (1), that is, the operators T,

T', C, N and the basis functions (W.J must
By introducing new matrices (K)J, (k), (le) be identified. It is straight-forward to
and (m) defined by show that

Kilo- Ki, all (no sum) | 1/a'

Ni l all (no sum) T " , T' - T', M - p,

k,, - , nd , (no [) L2aI/axay I. a (9)
is- H - it% s (no sum) and, since no edges are free, the stiff-ness operator may be selected as

where t is the Eronecker delta, it
follows that Equation (3) becomes

((K * [k) )-~ilq~l [mOil
((Z 3 - iD, DIG (10)

D, 0IG 0
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where where

De- Dl 2 D0, C'1 - (X1. X1 ) cl (y , t y)

As is common in plate theory, the basis Gil - ( q1 " (Y" .Yj)
functions will be selected as products of

the beam shape functions, i.e. Nil (X.,X ) h,) - (Y"'. Y)

In view of Equations (15-16), the term
0" (x,y) , Vx. (X/a) y. (y/b) (11) appearing in Equation (14) are

p',a - Di1 4. R0 1llt 1 * •2DR'Ct1 ctt

where the plate domain is 0 S% a t a,

0 Is y % b and I - a/b is the laminate's Milli - 1 -
aspect ratio. The beam shape functions
satisfy pa'r,. Dtildse + RD,,tz*' + 2DRICc.c

- P * - a 0 pa'k.4,, S 2DRC.Ic.. + 2RDsg ( Rt)

•V 2_'V4G. . (hi.-h.,)
.0 (17)

where ( )l denotes the fourth derivative Finally, substitution of Equations (17)
with respect to the indicated non-dimen- into (14) produces the desired result
sional argument. It is worth noting that
y,. Y., p, and U. are known for each set of pa).,, - pa'O)l - Dllp t + R'DuI, + 2D.* CICsi
boundary conditions. Further, if the
basis functions are normalized with - 41' R t (03 R4, • D1 g1 . (H1 -N1 ,)
respect to the mass density p, it follows (anJ1 1)

that the shape functions must satisfy • D.ItRGgi (bs -h1 1 ) ]'/ I0.(Jh,-J*')

(X,.I, X 11 ,J * p.1 / *61 (12) * O.a'(U.'-V1,) + 2A2 '(C.c.€-Cl,,c)I

It remains to determine the mass and (18)

stiffness elements from Equation (4).

Since the basis functions in Eq. (11) are

double subscripted, it follows that Wie

proper fore for Eq. (4) is DZSCUSSION
im V (T *U,/ 87 m) Equation (16) provides the desired

(13) approximation for the fundamental

NJ)= a (*is. M.) frequency of laminated rectangular plates
subject to All combinations and clamped

and simply-supported boundary conditions.
while Equation (7) bectme5 In the derivations of this equation, it

was implicitly assumed that the natural
frequency %, is in fact the fundamental

L, 1  111- - I IS; (Nalksakm'J -RXss ,J,), frequency. It can be established that for
Milli 141 1 1 KM,~ t1, the boundary conditions under consider-

ation, this assumption is indeed correct.
Finally, it should be pointed out that the

(14) matrices (C], (tea (G, (g, (1 and (b)
and beam frequencies P, and iu are boundary
condition dependent; hence these values

Substitution of quations (9-11) into (13) account for the effect of the boundary
readily yield@ conditions in tIration (18).

Apart from the term proportional to D. in

NOO• .Ikl (Als) the numerator of the double sum term
appearing in Equation (16), the same
expression for al, was obtained by Reiss
and ian (71. Zn their approach, A, was

p a' # m  (DP, * v.,3 4) A I treated as a function of Di. and D,,, and
the sensitivity derivatives of a%, with

0 2D Al CIC) * . ,,gjg (Ham-H) respect to these arguments were used to

# 2.'DA Gd thi.-h~) (16) generate the approximate solution.
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mowever, since these derivatives could not finally the edge y-b. The columns
be exactly evaluated, a somewhat hueristic labelled k, are calculated using the Ritz
approach was used to obtain the ultimate method with N-9, while the column labelled
result. In the approach of this paper, k, is determined from Equation (18) also
however, exact sensitivity derivatives with N-9. Finally, since the frequency is

have been obtained, and consequently symmetric in 0, results are limited to ply

Equation (16) is exact to within the order angles between 0" and 90.
of terms retained in the Maclaurin series. ACDIOWfLr, BD6UI

R&SULT$ This study was supported by the Air Force
It is noted that a double infinite sum Office of Scientific Researcb...

appears in Equation (10). Of course, in through Contract No. r49620- Ct
practice, only finite sums may be The United States Government Iiutoi ed

evaluated. If, say, m and n take on to reproduce and distribute reprints for

values up to N, then, strictly speaking, governmental purposes notwithstanding any

Equation (18) provides an approximate copyright notation hereon.

solution to the finite-dimensional
Rayleigh-Rita equation in which the
matrices (NJ and (K) consist of N rows
and columns. Consequently in assessing RJTZRZNC2$

the accuracy of Equation (18). it is
necessary to compare the approximate (1] Jones, R.M., Mechanics of Composite

solution for a given N to the Rayleigh- Materials, Scripta Book Company,

Ritz solution for the same N. Washington, D.C., 1975.

(2 Hearmon, R.F.S., "The Frequency of

In the following tables, the validity of Flexural Vibration of Rectangular
Equation (16) is established by comparing Orthotropic Plates with Clamped or

the fundamental frequency calculated from Supported Edges," Journal of Applied
it to the corresponding frequency obtained Mechanics, Vol. 26, pp. 537-540, 1959.
from the Rayleigh-Rits approach. In all
cases N was selected to be nine; thus (3) Bert, C.W., "Optimal Design of a
there are 61 terms in the expression for Composite-Material Plete to Maximize its
the lowest mode shape ul. Results are Fundamental Frequency,* Journal of Sound
presented only for balanced symmetric and Vibration, Vol. 50, pp. 229-237, 1977.
four-ply plates (-/-e/e), since the
addition of more layers reduces the effect (4) Bert, C.N., "Design of Clamped
of the coupling terms Dig and Dig. For Composite-Material Plates to Maximize
comparison purposes, it Is convenient to Fundamental Frequency, *journal of
introduce the fundamental frequency Mechanical Design, Vol. 100, pp. 274-278,

1978.

(5) Reiss, R., Ramachandran, S. and Qian,
" B., "The Natural Frequencies of Symmetric

Angle-Ply Laminates Derived from

where U, is an invariant material property. Eigensensitivity Analysis," Proceedings of

I1 and h is the common thickness of the the American Society for Composites:
plies. Third Technical Conference, Seattle, WA.

198. Technomic Publishing Company, Inc.,

Each table includes results for typical Lancaster, PA, pp. 71-79, 1988.
boron epoxy (8-3) and high modulus
graphite epoxy (0-) laminates defined by (6) Reiss, R. and Qian, a., "On the
the following data: Fundamental Frequency of Rectangular

Simply-Supported Symmetric Laminated

R-9 G-3 Plates," pp. 786-789, Proceedings of the
7th modal Analysis Conference, Las Vegas,

EjIE 10 40 1989.

Z'/Gj' 40 60 171 Qian, 3. and Reiss, R., "The Funda-

mental Frequency of Symmetric Laminates

VIS 0.30 0.25 Determined by tigensensitivity Analysis,"
Computer Aided Optimum Demian of

The tables have been developed for various =t91urS:i Recent Advances, Editors:
aspect ratios and boundary conditions. Brebbia. C.A. and ernande:, Springer-
The nomenclature S and C is used for Verlag, pp. 299-310, 1989.
simply-supported and clamped edges,
respectively. The first letter denotes
the support conditicm on the edge x-0: the
next for y-0; the third for x-a: and
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(91 Reiss, R. and ian, B., "£igenvalues
(81 Reiss, It., Qian, 9. and Aung, W., of Self-Adjoint Systems Determined by
Eigenvalues for Moderately Damped Linear Eiqensensitivity Analysis," Proc. 2nd Pan
Systems Determined by Eigensensitivity American Congress on Applied Mechanics
Analysis, -ProC. ASM Design Automative (PACAM), Valparaiso, Chile, 1991 (to
Conference, DZ-Vol. 23-2, Chicago, 1990. appear).

TABLE I RESLTS FDR THE SSSS PLATE

so R Ft kt 1 k I

8-E C-E

0 1 38.895 38.895 37.954 37.954
15 1 41.010 41.075 39.815 39.991

30 1 45.509 45.782 44.338 44.957
45 1 47.789 48.136 46.784 47.524
60 1 45. 509 45.782 44.338 44.957
75 1 41.010 41.075 39.815 39.991

90 1 38.895 38.895 37.954 37.954

0 2 15.590 15.590 11.687 11.687
15 2 18.117 18.129 14.945 15.023
36 2 23.139 23.215 21.236 21.492
45 2 27.784 27.945 27.023 27.384
60 2 31.560 3t.688 31.803 32.042
75 2 34.362 34.383 35.341 35.382
90 2 35.451 35.451 36.707 36.707

0 5 11.389 11.389 6.208 6.208
is 5 12.151 12.151 7.859 7.866
30 5 15.178 t5.187 12.719 12.778
45 5 20.831 20.859 20.242 20.307
60 5 27.540 27.557 28.244 28.272
75 5 32.803 32.806 34.234 34.339
90 5 34.776 34.776 36.442 36.442

TANLE II RESLTS FO D CDCC PLATE

8-E C-E

o R r k, rt k,
0 1 84.172 84.172 84.284 $4.284
15 1 82.260 62.181 81.592 81.467
30 1 78.658 78.355 76.642 76.416
45 1 77.014 76.580 74.474 74.216
60 1 78.658 78.355 76.642 76.416
75 1 82.260 82.181 81.592 81.467
90 1 84.172 84.02 84.284 84.284

0 2 " 817 32.816 25.050 25.050
15 2 34.273 34.241 26.97 26.942
30 2 39.773 39-621 34.846 34.70.
45 2 50.513 50.328 48.936 48.782
60 2 64.002 63.861 65.210 65.0
75 2 75.055 75.010 77.963 77.898
90 2 79.275 79.275 82.756 82.756

0 5 25.276 25.276 13.64 13.644
15 5 25.892 25.894 15.63 15.590
30 5 31.496 31.478 25.746 25.688
45 5 44.918 44.872 43.749 43.682
60 5 61.212 61.178 62.955 62.912
75 5 73.911 73.901 77.268 77.256
90 5 78.651 78.652 82.536 82.536

31



TABLE III RESULTS FOR 7hE CSCS PLATE

B-E C-E

to E k I  I k ,

0 80.824 80.824 83327 83.327
15 1 78.613 78.637 80.628 80.686
30 1 74.281 74.276 75.494 75.500
45 1 67.609 67.638 67.565 67.621
60 1 57.428 57.481 55.133 55.236
75 1 48.131 48.134 43.346 43.318
90 1 45.333 45.333 39.957 39.957

0 2 23.778 23.778 22.007 22.007
15 2 25.280 25.275 23.835 23.833
30 2 29.055 29.077 28.423 28.461
45 2 31.804 31.834 31.606 31.653
60 2 33.402 33.348 33.547 33.477
75 2 35.097 35.051 35.704 35.625
90 2 36.027 36.027 36.879 36.880

0 5 11.806 11.806 6.935 6.935
15 5 12.636 12.641 8.709 8.716
30 5 15.679 15.682 13.445 13.435
45 5 21.121 21.077 20.573 20.505
60 5 27.647 27.599 28.344 28.279
75 5 32.842 32.826 34.255 34.234
90 5 34.803 34.80 36.451 36.452

TAKE IV RESJLTS FOR TdE SOC P ATE
5-4 C-E

0R k, k,
0 61.839 61.839 59.340 59.340
15 1 62.322 62.255 59.334 59.221
30 1 64.755 64.535 61.623 61.515
45 1 69.466 69.254 67.296 67.322
60 1 75.034 74.%5 .74.264 74.380
75 1 80.006 79.95 80.820 80.813
90 1 82.104 82.105 83.701 83.702

0 2 29.487 29.487 20.052 20.052
15 2 31.377 31.353 22."7 22.964
30 2 37.934 37.864 32.769 32.757
45 2 49.665 49.645 48.174 48.242
60 2 63.658 63.652 64.991 65.011
75 2 74.871 74.859 77.895 77.883
90 2 79.116 79.118 82.710 82.711

0 5 25.158 25.158 13.420 13.420
15 5 25.760 25.764 15.388 15.384
30 5 31.39 31.406 25.643 25.644
45 5 64.872 ".872 43.711 43.709
60 5 6t.192 61.189 62.941 62.936
75 5 73.902 73.90 77.264 77.262
90 5 78.644 78.646 82.534 82.534
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6. THE LOAD CORRECTION PRINCIPLE

Taft H. Broome, Jr. Sc.D.

ABSTRACT

A methodology for generating a geometrically general class of continua to

represent large lattices is presented. This methodology is characterized by

a mapping of the geometry and material properties of the lattice into general

continua whose material properties can be prescribed independently of the lat-

tice's architecture, and whose loading consists of the lattice's loading

together with an intrinsic load called the "load correction." This load

correction is formulated in a manner that is consistent with the constraint

that the continuum and the lattice exhibit similar kinematic responses to

their respective loadings. Knowledge about the lattice is obtained from a

Ritz analysis of the continuum wherein efficiency deriveE from the repeating

nature of the lattice's architecture and the small set of basis functions

necessary to describe the global response of the continuum.
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1. Introduction

The purpose of this study is to assess the utility of the load correction

principle by which the mechanics of large discrete structural systems can be

mapped into the mechanics of continuous media. The aim is to contribute new

experiences toward the production of a comprehensive theory that can be imple-

mented economically for the analysis of large complex lattice systems.

Since lattices will likely provide structural support for space stations,

large orbiting antennas, solar power satellites, etc., then miles of cosmic

space may be occupied by individual periodic assemblages of structural ele-

ments possessing identical architectures (see Figure 1). Lattices of this

sort possess enormous numbers of degrees of freedom (O10 4 d.o.f). Such num-

bers are sufficient to eliminate the finite element method (FEM) from conten-

tion as an economical tool for the global analysis of large space structures

(LSS). Thus, more economical analysis methods, such as "continuum modeling"

methods, offer the promise of economical alternatives to global application of

the FEM to LSS.

One class of continuum modeling methods focuses upon similarities - where

they exist - between the material domains of lattices and simple continua such

as rods, beams, shafts, plates, and shells 2 . Material properties for a con-

tinuum are sought that enable it and the lattice it attempts to model, to

exhibit similar kinematic responses to similar loadings while being

constrained by similar displacement boundary conditions. Thus, the large set

of algebraic equations associated with FEM models of LSS are avoided in favor

of small sets of differential equations to which closed-form solutions exist,
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(a) Given Lattice (b) Continuum Model

Figure 1: Given Lattice and Continuum Model
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3

or conventional solution techniques are applicable. The load correction

method (LCM), which is a means of implementing the load correction principle,

is a straight forward general continuum modeling method which is adaptable

to both simple and complex domains.

The LCM permits a priori specifications of the material properties of the

continuum model, and seeks a new loading for it that is consistent with the

constraint that the model and the lattice exhibit similar kinematic responses

( including observance of similar kinematic displacement boundary conditions).
3

As we shall see, this new loading consists of the loading applied to the lat-

tice and a displacement-dependent load called the "load correction." Because

closed-form solutions are not yet readily apparent, a Ritz analysis is used to

transform the large set of algebraic equations produced by the FEM into a

smaller, more manageable set. Also, the inner-product nature of a Ritz ana-

lysis enables a Dirac-delta technique to take advaptage of the repeating

architecture of the LSS to arrive at this small set of algebraic equations

economically.

The objectives of this study are as follows:

(a) Introduce a nomenclature that facilitates the uncoupling of globally

dependent parameters from locally, or what will be defined as "cluster" depen-

dent parameters;

(b) Formulate the given lattice problem;

(c) Map the given lattice problem into a continuum model according to the

load correction principle;

(d) Solve the mod-';

,e) Illustrate how the globally dependent parameters can be evaluated

36



4

economically; and

(f) Demonstrate the utility of the LCM via sample problems.

The utility of the LCM will be assessed in terms of comparisons with the FEM

and an LCM/FEM hybrid approach; and in terms of the degree to which the appli-

cations spectrum of the LCM extends beyond those of other continuum modeling

methods.

The scope of this study is limited to the static analysis of planar

lattices. This is the narrowest scope within which the objectives of this

study can be realized, and it is adequate as an introduction to the LCM.

Moreover, even though modal analysis of LSS is of immediate interest to dyna-

mic control efforts, the role of the LCM in these efforts will likely take

the form of a static tool for generating generalized or reduced-order flexibi-

lity matrices for LSS. Thus, this study is the first stage in the development

of a comprehensive LCM theory.

The remainder of this study is organized into seven sections and three

appendices. The following six sections address the six objectives respec-

tively, and the seventh summarizes them with conclusions about the utility of

the LCM. The appendices contain a list if the LCM's nomenclature, definitions

of some analysis parameters, and a list of references.

2. The Cluster Concept

The given lattice structure will be modeled by a continuum whose raterial

domain spans a configuration of points that is always identical to the con-

figuration of the lattice's joints (for example, see Figures 2a and b). These

points in the continuum are called the "images" of the joints in the lattice.
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The index "y" identifies each joint in the lattice as well as its

corresponding image in the continuum. Augmenting this global numbering system

is a nomenclature that associates each joint and its image with locally

repeating architectures called "clusters."

A lattice cluster is defined as a subdomain of the given lattice that

facilitates the construction of a stiffness equation relating the external

forces at a joint to the translational displacements of this joint and of

other neighboring joints. This locally dependent equation will be called the

.cluster stiffness" equation. From the examples of lattice clusters shown in

Figures 2c and d, it is clear that the clusters are themselves assemblages of

repeating elements (or cells) that have been the focus of analysis in other

continuum modeling approaches.

Similarly, the images of the joints defining a lattice cluster will define

its associated continuum cluster.

A set of identical lattice clusters, each being associated with identical

continuum clusters, are identified collectively by the index "r". In Figure

2c, for example, the clusters bounded by global sets {y - 1,2,3,51,52,531,

{Y - 3,4,5,53,54,551, etc, are identified as clusters of type T - 1. Sets

{y - 2,3,4,52,53,54}, {y - 4,5,6,54,55,56}, etc., are identified as clusters

of type T - 2.

With respect to each cluster type, the joints and images at which the for-

ces in the cluster stiffness equations are applied are called "principal"

joints and images, respectively, in the cluster, and are identified by the

index "e." Moreover, the joints and images at which the displacements in

these equations are required are identified by the index "B." The index " '
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is used to distinguish two or more principal joints or images sharing the same

(T,e) designation, but different y designations. We define a so that there is

a one-to-one relationship between each y and each 3-tuple (T,e,a).

Symbolically,

Y- (T*C9a), ('reCL) ( 2.1

where: g is an operator; and g-1 is its unique inverse (see Table 1).

The 4-tuple (T,e,cL,B) identifies a unique point y in a global domain

according to the rule

y " (Ts,a, ) , (T,z,a,B) 7 6-(y) 2.2

where: o is an operator; and its inverse 6-  exists, but is not necessarily

unique. We define 6 so that the spacial relationship- shared by points

g(T,c,a) and 6(T,e,a,0) in the global domain is identical to the spatial

relationship shared by points identified by the pairs(T,e) and (T,B) in the

clusters, respectively (see Table 2).

Figures 2c and d, together with Tables 1 and 2, define a cluster

"scenario" by which locally dependent stiffness equations can be constructed

at each joint in the lattice, and stiffness equations of similar forms can be

constructed at the images of these joints in the continuum. Other scenarios

are possible - some affording increased precision in the cluster stiffness

equations, but at the expense of increased computational requirements.

In the analysis which follows, the Greek indices -r, C, a and S are used as

superscripts to distinguish discrete parameters from their continuous forms

(see Table 3 ). Roman subscripted indexes m, n, i and J denote components of
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TABLE 1: The 9-transformation for Figure 2.

1 1 1 1 1 1 11 1 1 11 1 2 2 2 2 2 2 21 2 2 2 2 2

1 2 2 2 - 2 3 4 4 4 - 4 1 1 11 - 1 2 3 3 3 - 3 4

a 11 2 3 - 24 1 1 2 3 - 24 1 2 3 - 24 1 1 2 3 -124 4

1 1 2 4 6 -148151 525456 -98 3 5 7 - 49 50 535557 -99 100

TABLE 2: A sample-of the 6-transformation for Figure 2.

T 1 2 222222222

1 l 2i 2 21 21 21.2 2 2 2+ 2 2 2

I 11 1 1 1 2 2 2 2 2 2

8 1 1 2 3 4 51 61 2 3 4 5 6

y 1 1 2 3'51 52153 3 4 5 5315455

TABLE 3: Continuous and discrete parameter forms.

Parameter Continuous Discrete
Type Forms Forms

Cartesian xY xTea x Tae
coordinates n n n n

Position 0y -* -xTTea Tea - T ra8B
e rx e r x eVectors n n n n n f n n n f f n

Displacement r 0YTea -IPF£e T~aS M8'Ta
Basis Functions %'m cm(r "q -r

Assumed Dis- T a uu = u ( TEas -T (
placements Un Un n rn n U n t

Displacement y)'Ta Ea Tea -T 1EaS
Di p ac m n y z U u = Z u e u = U e

Vectors u une n un n n e u n n n n e n n
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these parameters; and m', n', i and J' are alternates of their unprimed coun-

terparts. The value of this nomenclature is that it facilitates the

uncoupling of global from local dependencies since parameters that are depen-

dent upon a and/or y are globally dependent; and those that are independent of

a and/or y, but dependent upon T, e and/or S, are locally or cluster depen-

dent.

3. The Given Lattice Problem

The lattice cluster stiffness equations are given in the form

-nZ ... (rc,a) - g-l() 3.1
nt nn a

where: the overbar refers to the lattice; Ty is the component of the external

n

force acting ov the lattice at joint y in the direction of the global unit

base vector n , are the cluster stiffness coefficients, or simply the

stiffnesses;" a un ,  are the displacements of the joints in the cluster.

In the case that the lattice is a truss (i.e., all joints are pinned),

equation 3.1 is the exact form of the static equilibrium equation.

If the lattice is a frame (i.e., all joints are rigid) or a hybrid of

pinned, rigid and/or flexible joints, the equilibrium equations can be reduced

to the form of equation 3.1 by (a) invoking St. Venant's principle to neglect

the internal moments at joints 0 in the cluster which are remote from the

principal joint "c ", and (b) using a standard condensation procedure to elimi-

nate the external moment equations.

We shall assume that for each pair (n,y) where'r is unknown, the displa-
n

cements are prescribed as
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~ -~ 3.2un n

where: On are known. The problem is to find u that satisfies equation 3.1

wherever F n is known.

4. The Continuum Model

A continuum will be said to be "topologically" equivalent to a lattice if

the undeformed material domain of the continuum spans a set of material

points, called "images," whose geometrical configuration is identical to the

undeformed configuration of joints in the lattice. A continuum that is topo-

logically equivalent to a lattice will also be said to be "kinematically"

equivalent to it if all deformed configurations of the lattice's joints and

their images in the continuum are identical. As we shall see, the choices of

material domain and displacment constraints at non-image points of the con-

tinuum will be motivated by factors of simplicity.

A continuum model for a lattice is defined as a continuum that is kinema-

tically equivalent to the lattice. The formulation of the model begins with a

choice of material domain that is topologically equivalent to the lattice, and

a choice of material or constitutive properties that may be specified indepen-

dently of the lattice. This choice will also be motivated by factors of

simplicity.

Static equilibrium on the surface S of the continuum model is satisfied by

T(*) - dn() 4.1a

where: T is the component of the surface traction in the e direction; andnn

dn is a scalar differential operator. Static equilibrium in the volume V
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enclosed by S is satisfied by

Bn() " Dn(u) 4.1b

where: Bn is the component of the body force in the en direction; and Dn is a

scalar differential operator.

Let T be any subdomain S(2S containing only one image ycSy. Let

SWO(Tn) be the variation of work done on the model by all the surface trac-

tions Tn acting on S . Then

6W'(T) "J f dn(l) 8un dS • 4.2a

Sy

Similarly,

awT(BU) fJ'J'J In (u) au ndV 4 .2b

VT

where: SWY(Bn) and VT are work and volume domain analogues of 6WY(T n ) and

SY respectively. These conditions must clearly be satisfied no matter how the

loads on the continuum are applied.

We shall stipulate that the loads shall be applied so as to satisfy

6WT(T ) - Fy  ... 0**ycS , and 4.3a
n n n

6 WT(B ) - FT 6uT ... *CV 4.3b
n n n
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for all pairs (n,y) where F are prescribed, and where:a

F Un E IUT + Ta 4.4a

n a n' Bn

and

4.j J'n(U) 6un 
d S  ... ye S

n nn,4.4b

If Dn (u) Su1[n dV ... yv.

VY

The coefficients )Jeo can be obtained from finite difference approximations of

the right-hand sides of equations 4.2a and b. Below, these stiffness coef-

ficients will be obtained from use of the cluster as a device for imple-

menting the finite element method (FEM) on a local scale.

In either case, substitution of equation 4.4a into equations 4.3a and b,

and appeal to equations 4.2a and b, give

f d n (u ) un dS - (E I knn'u ButC8 + n k Bnn Unt n 4.5a

S
Y

where ycS, and

fff On )8undV Q E knn at nu n U n 4.5b

VY

where )WV. Then, in view of equation 4.4b, we can deduce from equations 4.5a
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and b that

nu n- 0 £ nn? unt s  -0 4.6

n' B .

for all pairs (n,y) where 6uY is arbitrary (i.e., where Pare prescribed).
n n

By further stipulating that

for all pairs (n,y) where MYare prescribed (i.e., where 6u 0), we can

conclude that

Un - uY ... '#nY) 4.8

Thus, the continuum is kineaatically equivalent to the lattice.

As long as the axiom of continuity is not violated (i.e., the Jacobian

0 0), kinematic equivalence is preserved regardless of any additional displa-

cement constraints imposed at non-image points in the continuum. Here again

simplicity will be seen as the motivating factor for imposing displacement

constraints on the continuum at non-image points.

Let the "load correction" be defined as the force

AFT a E E TCB TCaB 4.9an nos 0 Uni

where
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Ak n = kTc -k nn I 4.9bnn nn / nn •

Then

Fr - Vy + AiY  4.10n n1 n

In summary:

A continuum that is topologically equivalent to a lattice

is also kinematically equivalent to it if (1) the displace-

ment prescriptions imposed on the lattice are imposed on

the continuum at their corresponding images; and (2) the

load on the continuum is the sum of the lattice forces and

the load corrections.

This principle, called the "load correction principle," is the strategy by

which the given lattice problem was mapped into a continuum model.

5. Solution of the Model

An approximate global solution of the continuum model will be obtained

using a Ritz approach. The basis functions for the assumed displacement field

are

- %G ) 5.1

where: the range of m is finite; and the various discrete forms qm, T
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and are given in Table 3. To simplify the analysis, two special con-

ditions will be imposed on this set of basis functions:

q . £ mat q, and 5.2a
m'

aq./axn_  - E D-nmpq m , 9 5.2b
m

TEOS

where: J t and Dn= , are known constants.

This set if basis functions will generate the assumed displacement field

in the form

u n a Z bnmq3 + E E anmJ qm j 5.3
m a j

where: un is defined in Table 3; and bnm and a nj are coefficients that are

specified so that the displacement boundary conditions are satisfied for all

choices of the varying parameters X Then, the various discrete forms of

un shown in Table 3 can be expressed in terms of X J. Furthermore, the

variation

aun - Z E anjSj 5.4

and its various discrete forms follow as suggested by Table 3.

Using these equations, the forces applied to the continuum can be written

as
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- + **tE TCB 5.5n n Ebnm qm + Z Z anmj qm J.
m mj

where: the constants b ** T and a **T are given in Appendix 2. The variation
nm nmj

of work on the model ,then, is

SW r Fe1  Su 5.6an n
Y

which, after substitutions from. equations 5.5 and 5.3, becomes

6W - (F) + (b) +E(a)5S J j( +, 4jj +^Ej,)6x 5.6b

where: 0 (F), 0 (b), and #(a! are defined in Appendix 2.
j j ii

Using engineering notation, the components of strain in the continuum are

auC, EZ£, n n' 5.7
n n' axn

in the linear case where: Ginn, are known constants. Differentiation of

equation 5.3, and substitution of equation 5.2b into Jhe result yield

Ci ( (b) + u (a) 5.8m i i isJJq .

where: G(b) and G(a) are given in Appendix 2.

If we assume that the model obeys Hooke's law, the stress can be written

as
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r C1,i, 5.9
i'

where: Cii, are prescribed constitutive constants. Then, the variation of

internal energy

6P - Ea 6e i dV 5.10

V

can be written as

aP -r( T (b)~ + E a 5.11
j i J

after appropriate substitutions of equations 5.8 and 5.9 into equation 5.10,

(b) (a)
and where: Y and are given in Appendix 2.

Since SP - 6W, and since 6). are arbitrary, the solution for X proceeds

from (a) setting equation 5.6&equal to equation 5.11 to get

( (a) (a) - (b) (b) _ (F) 5.12

and (b) implementing the standard Gaussian elimination procedure. Back

substitution of the resulting X into equation 5.3 gives the continuous

displacement function for the model, and the discrete form uY is the solution
m

of the lattice.

6. Computational Economy

The effort required to obtain an FEM solution to the given lattice problem
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can be measured roughly in terms of the cpu (and memory) required to solve a

narrowly banded set of algebraic equations of order rN where: 1 €y 4 1, and

1 4 n 4 N. The effort required to obtain and LCM solution to the same problem

can be measured roughly in terms of the cpu required to (a) solve a dense set

of algebraic equations of order J, where 1 4 j 4 J (see equation 5.12); and to

(b) evaluate the parameters listed in the Appendix. As we shall see, J << M

generally, and the evaluation of these parameters can be made with an effort

that is generally independent of the ranges of the global indexes a and y.

From Appendix 2, it is clear that if the computational effort required to

evaluate the parameters *0 and QE, is independent of A (where 1 4 a 4 A) and

r, then the effort required to evaluate the remaining parameters is also inde-

pendent of A and r. To see what effort is actually required to evaluate these

parameters, consider the equation

M I. 6.1
Y

An important role of the LCM in the analysis of large space structures is

to produce a generalized or reduced-order flexibility matrix for the lattice

so that the frequencies and mode shapes can be deduced from

[I - W2 .ilul 0 6.2

where: I is an identity matrix; w is a natural frequency; f is the flexibi-

lity matrix, which is the inverse of the stiffness matrix; M is the genera-

lized mass matrix; and U is the mode shape vector. The flexibility matrix

will be generated column-wise from sequential applications of a single unit

force to the model. Thus, each use of equation 6.1 will usually involve only
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one non-zero value of Wn. This is to say thatU

. -n Y e o s m o o a d m 6.3
nm m Fno qmo 6 non 6mom °.. no sum on no and i6

where: the indexes no and m0 are fixed values; and 
6non and &mom are

Kronecker deltas.

If gravity gradients, solar pressure or other distributed loads are

applied to the lattice, then equation 6.1 can be computed economically if we

can write

F n  E cnmq a 6.4
a

where: c n are known constants. Substitution of this form into equation 6.1

yields

Om =r cn Q qmqm, ) 6.5
a Y

The term in parentheses can be evaluated efficiently using a Dirac-delta

technique.

For example, if

q 2 q2  - P 6.6

then

E q2 q Y (XI)6.
Y Y

But, using the Dirac-delta function, we can write
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() 2  f 2 6.8

so that

8(+X r]d0

Y Y & 2 6.9
Y 1

+x -0

where the term in brackets is an integrable function. Integrating equation

6.9 by parts gives

E qy [ 2z - + 1 6.10
S1 01

Y xI

where: Z1 - fJE ,(&.-xy)dE; and Zk 1 -fZkd , k-1,2. The integrals Z1 , Z2 ,

Z3 can be integrated exactly - by hand. Back substitution of these values

into equation 6.10, and then into equation 6.5 results in a symbolic eva-

luation of $n." Thus, the cpu required to evaluate *nm is independent of r,

and the memory requirements are virtually miniscule.

In a like manner, the parameter

TE TCa tEO

is evaluated using the above Dirac-delta technique, thereby implementing a

globally independent effort. Thus, the LCM can be implemented economically.
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7. Sample Problems

A selection of plane lattice structures is discussed below as a means of

demonstrating the versatility of the LCM. In each case, the continuum model

is an isotropic, plane stress solid whose material domain follows the outline

of the lattice. Where the displacement boundary conditions for the lattice

are discrete hinge supports, the model is constrained to obey hinge support

conditions along line segments joining the images of these hinges. The

assumed displacement field is generated by power basis functions

{m: 1, x 2, (xd)2  x 2 ,(x2) 2 , (x1) 3 , (x1) 2 x 2, .. . 7.1

The LCH was implemented via the LCH21 computer code on a Vax 11/750 ' and the

FE1 was implemented via STRUDL on an IBM 30335.

Problem #I. Two loading cases are considered for the cantilever truss

shown in Figure 3 . The truss is a single-braced, one-way, single-story

structure that is well known to behave much like an orthotropic bean. The

constitutive properties, however, will be modeled as isotropic in the

following LCM model.

In the boom's case , the LM models the horizontal displacement field with

a linear displacement field. This model is sufficient no matter what the

length of the boom may be. Thus, the cpu required by the LCM is independent

of the global d.o.f. of the boom (see Problem #2 below).

In the bending case, the LCM models the horizontal displacement field with

a parabola, and the vertical with cubic parabola. Comparison with the FEM is

adequate, and cpu remains independent of the global d.o.f. of the system.

Problem #2. The boom-like loading case is considered for the cantilever

lattice shown in Figure 4 . Two cases are considered: truss (or pinned

jointed); and frame (or rigid jointed).

53



21

x~~j~ 25kN 19@1k 5

25k 25 kN
x x

1* 1 20 @ lmxlm 20 @ lmxlm

EA - 25xl103 kN
8 u (x1 , m)

u(x1 ,0) (cm) 6

2- 4

(cm) 1- 2

___F EM -2

L C M -4v ( x 1  , l m )

FIGURE 3: Displacements of two singly-braced booms.
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FIGURE 4: Pin-jointed (truss) and rigid-jointed (frame) doubly-
braced booms.
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A linear displacement field is used to model the horizontal displacements,

and various orders of parabolic fields are considered for the vertical displa-

cements. A cluster of two panels was sufficient for the truss, and five

panels were used in the case of the frame. While increasingly larger displa-

cement fields for v are required to capture the edge effects in increasingly

longer booms, a linear displacement field remains sufficient for u whatever

the overall length of the boom, Because the d.o.f. of these displacement

fields are small, the LCM cpu is virtually independent of the length (i.e.,

# bays), while the FEM cpu increases geometrically.

Problem #3. The boom-like complex case is considered for the doubly-

braced hybrid of pinned and rigid joints shown in Figure 5 . The horizontal

displacement field is linear, and the vertical is of 10 d.o.f.

The LCM and FEM results for the horizontal displacements are almost

indistinguishable. The vertical displacements, however, compare favorably in

magnitude, sign, and overall trends. Edge effects are captured to the degree

allowed by the assumed displacement field (Figure 5 ).

Problem #. Shown in Figures 6-8 are two-story cantilever lattices

Three local architectural patterns are considered: doubly-braced, diamond

pattern of alternating diagonals, and W-pattern of alternating diagonals.

Comparisons of FEM with LCM results are shown, and these comparisons generally

follow those observed in the single-story cases: longitudinal displacements

for booms approximated well in the linear case; bending results were good;

etc. There were, however, some exceptions.

The bending cases, for relatively short beams, required higher-order

approximations for the displacement fields, and cpu for the short beams com-
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pared with FEM cpu. However, FEM cpu was not competitive with LCM cpu for

longer beams.

The vertical displacements shown in Figure 7 were not approximated well.

Although horizontal displacements were good in this case, as much as 12% error

in these displacements was observed in the single-story case. However, at the

expense of non-competitive cpu, the LCM accurately predicted the displacement

behavior of short booms assembled from this pattern in both the single-story

7
and the two-story cases . The failure of the LCM in the longer cases is,

therefore, attributable to the choice of assumed basis functions of the power

type where the actual vertical displacement field varies periodically in the

same period as the local repeating architectures (see Figure 7 ). A Fourier

basis set may well resolve this problem.

Problem #5. The flat, in-plane deforming plates shown in Figure 9 are

considered. Singly-braced, alternating diagonal trusses are considered, and a

hybrid LCM/FEK analysis is compared with a conventional global FEM analysis.

The problem is to compute the vertical displacement under the load applied

to the 5-bay x 5-bay plate. Two convergent cases are considered. First , the

FEM is applied to increasingly larger subdomains of the plate assuming the

internal joints are pinned.

Second, the LCM is used to compute the displacements of the 5-bay x 5-bay

plate. These results are then used as boundary conditions at the internal

joints where the FM. is again applied.

The second case converges much faster than the first, producing an 18%

improvement in system order at the 15 d.o.f. subdomain. Thus, the hybrid

LCM/FEM is more economical than the conventional global FEM for this case.
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8. Summary and Conclusions

A nomenclature was introduced in section 2 that facilitated the uncoupling

of cluster dependent parameters from globally dependent ones. The given lat-

tice problem was then formulated in terms of cluster coordinates. A continuum

model was formed as a continuum that is topologically and kinematically

equivalent to the lattice, but subject to a displacement-dependent loading

called the "load correction." Using this load correction, the continuum model

was described in terms of cluster coordinates.

The model was solved using a Ritz procedure which introduced globally

dependent parameters. However, when considering lattices with repeating

cluster architectures - as will typify LSS - these parameters were reduced to

cluster dependencies using a Dirac-delta technique for computing long sum-

mations. Sample problems were presented which demonstrated that the range of

lattice types to which the LCM is adaptable exceeds the present scope of com-

peting continuum modeling methods. While these methods lead to closed-form

solutions, the LCM leads to numerical models.

Some important features of the LCM are:

* General applicability to pin-jointed, rigid-jointed, and hybrids of

pinned- and rigid-jointed lattices;

* Micropolar models are not necessary for rigid-jointed lattices as the

cluster is a means of invoking St. Venant's principle locally so that the

rotational degrees of freedom can be eliminated via conventional static

condensation processes;

• The matrices comprising the LCM are either the familiar FEM stiffness

matrices whose dimensions are of the cluster d.o.f., or are otherwise
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easily generated;

* The LCH can be applied to a wide range of lattices possessing different

local and global architectures without adjusting the methodology to accom-

modate them;

* The LCM accommodates a choice of assumed displacement fields. Although

present considerations included power basis functions, Fourier basis

function may be desirable in cases where the displacements of the truss

vary periodically in the same period as the clusters;

* The LCM has the ability to capture edge effects;

* The global response of the LCM can be captured at a cpu that is substan-

tially less than that of 1EM for large d.o.f, structures. In most cases

observed, the LCM cpu is virtually independent of the d.o.f.

* Hybrid LCM/FEM promises to serve as a comprehensive analysis tool for LSS

that is superior to global implementation of the FEH.

Finally, well-known generalized or lumped mass techniques provide the

basis for modal analysis of LSS. The LCH or hybrid LCM/FEH can be used as an

economical means of obtaining the generalized flexibility matrices for LSS.

Thus, a reduced basis dynamic analysis technique for LSS proceeds from use of

the LCM as a static tool.
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APPENDIX I :NOMENCLATURE

*Teo ** Ea nmiP a nJ a m Parameters

Bn Body force components

bnm, bt *CO b T Parameters

C Constitutive coefficients

c Coefficients

D= Coefficients

On 4d n Differential operators

-I.
en Cartesian unit base vectors

31, e~, AFY Forces

f Flexibilitj matrix

6, g Index operators

G (b) (a) PrmtrGinn"t' i Gim aamtr

I Identity matrix

i Index

8 e Parameter

j. J Indexes, 1 4j 4J

nno, k nn,,Akn Stiffness

M Mass matrix

m, m 0  Indexes

N Index

n, n 0  Indems

P Internal energy

Q It TE (a) (b) Prmtr~mm''~ ' nm 'Prmtr
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q' j' qCaB Displacement basis functions

r Position vector

S, Sy  Surface areas

Tn  Surface traction

Un' t e n u u n TIaB un Displacements

VVY Volumes

w, w'(T n), w TBn)  Work

x , x, XT  x Cartesian coordinates
n n n n

Z1, Z2 , Z3  Integrals of the Dirac-delta function

a, A Indexes 1 4 a 4 A

B Index

y, r Indexes, 1 y Y 4 r

6 Operator: variational, Dirac-delta

anm Kronecker delta

e Index

Ci Strain

Varying coefficients

u Mode shape vector

Dummy integration variable

ai Stress

TIndex

( F), (b), S ,(a)' (," Parameters

()(b) (a)
jj' jam Parameters,(b), "(a) Parameters

w Frequency

63



31

APPENDIX 2 MAIN PARAMETER DEFINITIONS

*ea TEaO1. a mj a nmji mom

2. b nm b, i o

3. a E Z AkIaEm

4. b nm E E A n i

5. tri 1: V

rn

6. Q~)-E Z 0 a' T

7 mml Tm mm,

(b **T (b)8. Qambn i Q l

9. (b) r r Q (b)a)
n Tim nm jm
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12. G(b) - E G b D
im n ri Ginn' nm n mim

1 (a)
13. Gimj . r I G in n ainiml Dnm' mn' nt m

t

14. Om - f4  f qm dV

15. ((b) (a)
j m M, M

16. (a) -(a) G(a)

16. v i ' . E Cii, G 'mJG imJ' 'Iin'
i Vt a a
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7. COMPUTATIONAL ISSUES IN THE APPLICATION

OF THE LCM TO ESOMECHANICS

Taft H. Broome, Jr.
Department of Civil Engineering

School of Engineering
Howard University

Washington, DC Z00S9 - USA

AISTRACT

This paper addresses computational issues associated
with a function 0: I x I -R defined by the relationD(N, I) - hLI 1- ,x +0f 1 . f z2 dZ(Zl.dz,

where: N and I are positive definite intbgers; 0 <h; whenever
1<N, we have x n--xn - h for every lSnsN-1; and 6 is
Dirac's operator.n l

INTRODUCTION

The motivation for this paper is the appearance of D(MI)
in the LCM. FORTRAN' algorithm which enables macro-
engineering analyses of structures exhibiting local or grain-
size effects above the micro-scale3  In the application of
the LCM to a given mesomechanics3 problem, we can anticipatt
the integer I to remain fixed at some number I - 100, while 4
may take on a dozen (or fewer) values spanning I to maxN
10' . All of the appearances of N in the LCM algorithm are
contained in D(N,I). Therefore, we seek to study computational
issues that are contingent to effective computer resour:es
management of equation-1 when applying the LCM t
iesomechanics problems.

To sharpen the focus of this study, we call an arithmetic
equivalent or "exact" arithmetic restatement of the right-
hand-side of equation-h a "computable fomulation of D(, '" -.
such a restatement can be said to be readily translatable into
FORTRAN statements. In restricting the present discussion z
"exact" formulations - rather than including approximations
we, thereby, define the first :omputational issue of :he
study. For example, a computable formulation produced bv
integrating the right- and-side of equation-: is

D(4,1) - D1 (NI) Z.

where: 4. . . . . . .. 1 1, and

D1 (N.I)" n

Z n
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The second issue :oncerns various strategies for producing
:omputable formulations of D(S,.) The third addresses ralue
standards for Judging a Zomputable formulation to be "good,"
or for uaging one good computable formulation "better" than
another. And the fourth issue Lnvolves the selection of a
sequential, 3Z-bit word length environment as the basis for
ext~apolating the results of this study into other computing
environments.

In view of anticipated LCH applications in ausomechanics,
an a priori judgment of 'jood" will be assigned to a
comp~ta3 orimulation of D( N,I) if arithmetic complexity
analyses predict that the cpu required of its implmentatLon in
a sequential environment is independent of the choice of 4.
We see, for example, that computation of the sum in equation-!
via a "DO" loop statement over the range I to 4 requires cpu
that are (linearly) dependent upon the size of N and,
therefore, DN,I) is not a "good" computable formulation of
D(N,I). Rationales for-judging a given good formulation
"better" than another consist of appeals to issues
articulating memory requirements, parallelizeabilities, and
the range of (N,I) pairs over which the given formulation is
tractable (i.e., avoids overflow and is otherwise executable
and precise) when implemented in a 3Z-bit word length
environment.

Three computable formulations are produced and ranked
according to these issues apparently for the first time here.

The literatures on generalized functions, lattice sums,
et al., offer a variet'i of strategies for itaining computable
formulations of D(Mt). However, there seems to be io
previous discussion about D(N,1; with respect to the
computational issues expressed above. Consideration,
therefore, is given to these issues is they relate t3 an
immediatelv perceivable or "naive" strategy for producing
computable formulations of D(N,t). Experiences gained From
implementing these forrulations lead to development of an
informed strategy for producine a better formulation. and
experiences gained thereupon lead in turn to an even better
,irmulation.

Production of these "better" formulations together with
the rationale given for judging one of them "best" constitute
the main points of this paper. The significance and potentiaL
impact of the paper derive from the proof given herein that
the LCM model of the mesomechanics problem is (1) an O(W)-
system of equations and, therefore, (Z) a viable alternative
to the conventional finite element model (FEN) because -he FEN
is an O(maxN)-syste2 where O(1)<< O(maxN).
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8. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

we have presented closed-form approximations for the frequency

of structural systems, both with and without damping. As such,

these solutions are valid for all micromechanical models which

determine the macromechankcal stiffnesses D. Contiguity factors,

fiber shape factors and misalignment factors only affect Dj, and

hence are implicitly included in the results presented. However,

for angle-ply symmetric laminates, a parametric study has shown

that th frequency is relatively independent of the micromechanical

model as 7ing as classical laminate theory applies to the bonding

between layers. It is further pointed out that FEM models do not

present any inherent problem, for in Chapter 3 a solution was

obtained for the general discretized problem.

The viscoelastic analysis presented some greater than

anticipated difficulties. Solutions were obtained for generic

problems in which the damping could be modelled as a simple damping

matrix. For such models, however, the approximate solutions

presented appear very promising.

The load correction method has been extended from lattice

elements to include solid elements (1]. The case of solid

composite elements, however, remains to be demonstrated.

Recommendations

The next phase for the LCM approach should focus on

demonstrating the applicability of the composite solid element and

the completion of the dynamic analysis using this element to obtain
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natural frequencies for composites. This could be accomplished

using either the methods developed by Broome in Chapter 7 or Reiss

in Chapter 3.

Subsequent suggested work on sensitivity analysis could focus

on various simple viscoelastic models of orthtropic materials -

including Maxwell and Kelvin models. Once done, the method of

Chapter 4 could be extended to these viscoelastic models.
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